Electron Interaction Cross Sections for CF_3I , C_2F_4 , and CF_x (x=1-3) Radicals ## I. Rozum, a) P. Limão-Vieira, b) S. Eden, and J. Tennysonc) Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom #### N. J. Mason Centre of Molecular and Optical Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom (Received 9 November 2004; revised 24 March 2005; accepted 30 June 2005; published online 10 February 2006) The supply of absolute electron-impact cross sections for molecular targets and radicals is extremely important for developing plasma reactors and testing different types of etching gases. Current demand for such models is high as the industry aims to replace traditional plasma processing gases with less polluting species. New theoretical electron impact cross sections at typical etching plasma energies (sub 10 eV) are presented for the CF_x (x=1-3) active radical species in a form suitable for plasma modeling. The available experimental and theoretical data are summarized for two potential feed gases, CF_3I and C_2F_4 . This data cover recommended cross sections for electron scattering (total, excitation, momentum transfer, and elastic integral), electron impact dissociation, and dissociative electron attachment, wherever possible. Numerical values are given as tables in the paper and are also placed in the electronic archive. © 2006 American Institute of Physics. [DOI: 10.1063/1.2149379] Key words: electron molecule collisions; cross sections; resonances; electronic excitation; dissociative electron attachment; ionization; technological plasmas. | | Contents | | | Data on the electron scattering cross sections for CF | 275 | |----------------------------|--|---|-----------|--|---| | 1. 2. 3. 4. 5. 6. 7. 8. 9. | $ \begin{array}{c} \text{Introduction.} \\ \text{CF}_3\text{I.} \\ \text{C}_2\text{F}_4. \\ \text{CF.} \\ \text{CF}_2. \\ \text{CF}_3. \\ \text{Conclusions.} \\ \text{Acknowledgments.} \\ \text{References.} \\ \end{array} $ | 268
269
272
274
277
280
280
283
283 | 8. | Data on the electron scattering cross sections for CF_2 | 278
281
269
270
270
272 | | 2.
3. | $ \begin{array}{c} \textbf{List of Tables} \\ \textbf{Data on the electron collision processes cross} \\ \textbf{sections.} \\ \textbf{Electronic archive tables.} \\ \textbf{Data on the electron scattering cross sections for} \\ \textbf{CF}_3\textbf{I}. \\ \textbf{Data on the electron scattering cross sections for} \\ \textbf{CF}_3\textbf{I}. \\ \textbf{Data on the electron scattering cross sections for} \\ \textbf{CF}_3\textbf{I}. \\ \textbf{Data on the electron scattering cross sections for} \\ \textbf{C}_2\textbf{F}_4. \\ \end{array} $ | 268
269
270
271
273 | 9.
10. | Electron attachment cross section for CF_3I Momentum transfer cross section for C_2F_4 Integral elastic electron scattering cross section for C_2F_4 Electron impact ionization cross section for C_2F_4 . Momentum transfer cross section for electron scattering by CF Total elastic cross sections for electron scattering off CF and electron impact excitation cross sections for CF Dissociative electron attachment cross section for CF | 272
272
274
274
274
276
277 | | Lo
b)Al
Li
c)E- | esent address: Mullard Space Science Laboratory, University Condon, Dorking, Surrey RH5 6NT, UK. Iso at: Departamento de Física, CEFITEC, FCT-Universidade Nosboa, Quinta da Torre, P-2829-516, Caparica, Portugal. mail: j.tennyson@ucl.ac.uk 2006 American Institute of Physics. | _ | 13. | Total elastic and electron impact excitation cross sections for CF_2 | 277
279 | | | collisions with the CF ₂ radical | 279 | |-----|--|-----| | 15. | Total elastic and electron impact excitation cross | | | | sections for CF ₃ | 280 | | 16. | Momentum transfer cross section for electron | | | | scattering by the CF ₃ radical | 282 | #### 1. Introduction The unique properties of the plasma phase provide powerful solutions to a number of industrial and manufacturing problems. In semiconductor etching, plasmas can give access to chemically active species (ions and radicals) from a relatively inert feed gas. Furthermore, sufficient energy can be deposited onto the etch surface by ion bombardment to accelerate chemical reactions without exposing the sample to damaging temperatures. Today the industry relies upon the development of plasma technology to produce progressively more detailed and compact systems while also meeting increasingly severe environmental legislation. Technological plasmas are partially ionized, partially dissociated gases. They contain electrons, atomic ions, molecular ions, and neutrals. The neutral species include molecules of the original gas, products of chemical reactions in the plasma or on the sample surface, and fragments of the parent gas dissociated by electronic, ionic and photonic collisions. The density of free radicals in a fluorocarbon plasma typically used in semiconductor processing is of the order of 10^{14} cm⁻³, compared with ion concentrations of around 10^{10} cm⁻³. Therefore, free radicals such as CF, CF₂, and CF₃ are expected to play a key role in the etching process and the evolution of the plasma. Indeed, recent studies show that the concentration of CF_x radicals has a significant effect on the behavior of fluorocarbon plasmas. ^{55,56} Despite the establishment of plasma etching technology at the foundation of one of the world's most profitable and progressive manufacturing industries, most plasma processing development is based on empirical techniques. The processes for optimization and innovation of the current technology can thus be considered somewhat fortuitous and inefficient. The current demand for redevelopment is particularly high in order to meet the environmental targets set by the Kyoto Protocol.³ Accordingly, major investment has been directed towards experiments for in situ plasma diagnosis⁴ and the development of large scale computer models to simulate the conditions within a plasma processing cell.⁵ Models which aim to represent technological plasmas accurately depend upon precise cross sectional data for all the possible electron interactions with the constituent neutral species and ions. SiO_2 plasma etching is conventionally carried out using CF_4 , C_2F_6 , C_3F_8 , CHF_3 , and $c\text{-}C_4F_8$. These species have high global warming potentials (GWP) because they absorb in the infrared window ($800-1300~\text{cm}^{-1}$), and have very long residence times in the Earth's atmosphere. 6 CF_4 , for example, remains for up to $50\,000$ years. 7 The current generation of plasma reactors release a large proportion of feed gas into the atmosphere. Therefore an effective way to re- TABLE 1. Data on the electron collision processes cross sections. Data on CF_x (x=1-3) radicals is given for the energies typical in low-energy plasmas (<10 eV) | CF | CF ₂ | CF ₃ | CF ₃ I | C_2F_4 | |----|-------------------------|-----------------------------|---------------------------------------|--| | a | a | a | b | e | | a | a | a | b,c | f | | a | a | a | c | f | | a* | a* | a | b | _ | | a | a | a | d | g | | a* | a* | _ | d | _ | | | a
a
a
a*
a* | a a a a a a a a* a* a* a* a | a a a a a a a a a a a a a a a a a a a | a a a b b,c a a a c a* a* a* a b a a a d | aThis work. duce harmful emissions is to introduce new etchant gases whose properties lessen global warming effects. CF_3I and C_2F_4 have attracted considerable interest as possible alternative feed gases. CF₃I is expected to have a lifetime in the atmosphere of less than 2 days due to UV photolysis⁸ while that of C₂F₄ is estimated to be 1.9 days due to reactions with OH radicals. 9 Both processes produce water soluble compounds which are short lived in the atmosphere due to the 10 day hydrological cycle. Therefore, terrestrial ground level CF₃I and C₂F₄ emissions cannot contribute significantly to global warming. Within a plasma reactor, it is possible to produce high yields of CF3 radicals (as well as CF₂ and CF) by direct electron impact dissociation of CF₃I along the C-I bond. 10,11 Similarly, due to the weak C=C bond, C₂F₄ can be readily dissociated into CF₂ fragments by electron impact.¹² It has recently been proposed that by using a combination of CF₃I and C₂F₄, highly efficient and selective SiO₂ etching can be achieved by independently controlling the etch rate and $(CF_2)_n$ polymerization on the sample surface through the relative concentration of CF₃ and CF₂ radicals. 13 Research carried out over the last decades into plasma processing gases and their products has largely focused upon fundamental properties of the
relevant molecules and ions and their interactions with electrons for energies below a few hundreds of eV. Cross sections for electron scattering, electron impact ionization, and electron impact dissociation have been obtained for a number of feed gases. Recently, efforts have been made to compile reliable data for the molecules and radicals listed in Table 1 (CF₃I, C₂F₄, CF, CF₂, and CF₃). The reviews from Christophorou and Olthoff^{14,15} on CF₃I and the theoretical calculations on radicals CF, CF₂, and CF₃ from Rozum et al. 16-18 and Rozum and Tennyson 19 on the integral elastic and excitation, and differential electron scattering cross sections for energies below 10 eV, provide a better understanding of the relevant electron-induced processes involving the above molecules. However, there is still a lack of data on electron interactions for these species. ¹⁵ In particular, no absolute cross sections for electron attachment ^bChristophorou and Olthoff. ¹⁴ ^cBettega et al.²³ dMason et al.24 ^eSzmytkowski et al.²⁵ fWindstead and McKoy.26 gEden et al.27 ^{*}Estimated values (see text for details). Table 2. Electronic archive tables (available at www.nist.gov/srd/jprcd.htm and click on supplemental information.) | Table | Description | |-------|--| | 1 | Data on the total electron scattering cross section for CF ₃ I. | | 2 | Data on the momentum transfer cross section for CF ₃ I. | | 3 | Data on the integral elastic scattering cross section for CF ₃ I. | | 4 | Data on the ionization cross section for CF ₃ I. | | 5 | Data on the electron attachment cross section for CF ₃ I. | | 6 | Data on the momentum transfer cross section for C_2F_4 . | | 7 | Data on the integral elastic electron scattering cross section for C_2F_4 . | | 8 | Data on the ionization cross section for C ₂ F ₄ . | | 9 | Data on the momentum transfer cross section for CF. | | 10 | Data on the total elastic cross section, electron impact excitation cross sections for the excitation of the metastable a $^4\Sigma^-$ state, dissociative A $^2\Sigma^+$ and B $^2\Delta$ states, and other states C $^2\Sigma^-$ and b $^4\Pi$ for CF. | | 11 | Estimated data on the dissociative electron attachment cross section for CF. | | 12 | Data on the total integral elastic, electron impact excitation cross sections for the excitation of the metastable ${}^{3}B_{1}$ state, bound and radiative ${}^{1}B_{1}$ state, and remaining dissociative ${}^{3}A_{2}$, ${}^{1}A_{2}$ and ${}^{3}B_{2}$ states for CF ₂ . | | 13 | Estimated data on the dissociative electron attachment cross section for CF ₂ . | | 14 | Data on the momentum transfer cross section for CF ₂ . | | 15 | Data on the elastic cross section and electron impact excitation cross sections for the excitation | | | of the A ${}^{2}A_{2}$, B ${}^{2}E$ and 2 ${}^{2}E$ states for CF ₃ . | | 16 | Data on the momentum transfer cross section for CF ₃ . | and dissociation are available in the literature for many species from Table 1. These parameters are of major significance since they determine the ionization balance within the plasma and thus key plasma properties such as the electron energy distribution. Cross sections for dissociative electron attachment (DEA) and dissociation into neutrals also provide information about radical and negative ion densities. Experimental data for the CF_x radicals exists only for electron impact ionization. Since CF_x are radical species with high reactivity it has not been possible to form beams of these molecules with which to conduct traditional electron scattering experiments. Hence, there are no experimental data on elastic or inelastic scattering from CF_x . Therefore, all the data used in modeling must be developed using theoretical techniques. This in turn is challenging since it is more difficult to accurately model properties of radical species. In this paper we summarize recommended cross section data for the plasma reactants CF_3I and C_2F_4 , and present theoretical cross section data for the radicals CF_x (x=1-3) in a form suitable for plasma modeling. Table 1 gives a summary of the data presented. All the data, corresponding to the figures shown in this paper, can be found tabulated in this paper and in the electronic archive (see Table 2). # 2. CF₃I Data on the elastic and inelastic electron scattering from CF₃I, including an extensive study of its electronic state FIG. 1. Total electron scattering cross section for CF₃I (Christophorou and Olthoff¹⁴). spectroscopy using both photon absorption and electron scattering techniques, have been obtained from a series of measurements^{24,28–30} as well as by means of recent theoretical calculations.²³ The high-resolution VUV photoabsorption spectrum recorded by Mason et al.²⁴ is characterized by three distinct regions. The first electronic excitation region is a very weak continuum arising from dipole forbidden transitions centered about 4.7 eV. The second consists of four prominent band structures observed at around 7.4, 8.1, 9.0, and 9.8 eV, respectively, and contains vibrational structure from 7 to 13.5 eV. The third is a high energy region above the ionization potential showing some broader featureless peaks. The lowest region is more enhanced at lower incident energies and larger scattering angles suggesting that forbidden transitions are important in this region of the spectrum, while structures between 7.4 and 10 eV show greater differential cross sections at higher incident energies, a trend characteristic of optically allowed transitions. The broad and weak continuous $\widetilde{A} \leftarrow \widetilde{X}$ absorption feature centered at 4.66 eV (266 nm) with a local maximum cross section of 6.7×10^{-21} m² is ascribed to the excitation to an antibonding orbital along the C-I bond $(n \rightarrow \sigma^*)$ of the CF₃I molecule. This band has been assigned to transitions from the ground \tilde{X} state to the excited \widetilde{A} state of the CF₃I molecule. Special attention has been devoted to the A band (350-200 nm) excitation due to the prompt dissociation along the C-I bond caused by the strong repulsive nature of the excited state. Dissociation into a ground state (fluorinated)-alkyl radical (CF₃) and a ground state I (${}^{2}P_{2/3}$), or excited state I* (${}^{2}P_{1/2}$), provides a source of radicals for etching silicon wafers in industrial plasma reactors. To a first approximation a photoabsorption cross section would be a total electronic excitation scattering cross section summed over all angles for singlet (allowed) transitions at the incident energy at which one measures the photo absorption cross section. If the incident energy is 5 eV then this would be a limit for the total electron impact cross section for excitation of summed allowed transitions. This is an TABLE 3. Data on the electron scattering cross sections for CF_3I . Energies (E) are given in eV; cross sections are given in 10^{-20} m² (Key: TXT = total electron scattering cross section; MTXC=momentum transfer cross section) | | TO A COMPANY | | A 400 x cmh | |) (m) (m) | |------|------------------|-----|-------------------|-------|-------------------| | Е | TXT ^a | Е | MTXT ^b | Е | MTXT ^a | | 0.3 | 49.6 | 5 | 27.06271231 | 0.005 | 902 | | 0.4 | 40.5 | 5.5 | 28.02126848 | 0.01 | 451 | | 0.5 | 31.5 | 6 | 28.34768062 | 0.05 | 90.2 | | 0.6 | 23.3 | 6.5 | 27.8302742 | 0.1 | 45.1 | | 0.7 | 19.8 | 7 | 26.63651167 | 0.5 | 9 | | 0.8 | 18.8 | 7.5 | 25.45486906 | | | | 0.9 | 18.2 | 8 | 23.96789193 | | | | 1 | 18.1 | 8.5 | 22.86108719 | | | | 1.25 | 19.1 | 9 | 22.04912014 | | | | 1.5 | 20.7 | 9.5 | 21.50976299 | | | | 1.75 | 22.4 | 10 | 21.19957323 | | | | 2 | 24.3 | 12 | 21.96245058 | | | | 2.5 | 29 | 14 | 18.86652762 | | | | 3 | 35.3 | 15 | 17.81201957 | | | | 3.5 | 40.5 | 16 | 17.03199636 | | | | 4 | 44.9 | 18 | 16.00920269 | | | | 4.5 | 47.9 | 20 | 15.43238323 | | | | 5 | 49.5 | 22 | 15.06993597 | | | | 5.5 | 48.6 | 24 | 14.75454956 | | | | 6 | 47.9 | 25 | 14.58181211 | | | | 6.5 | 48.2 | 26 | 14.39162657 | | | | 7 | 48.1 | 28 | 13.96217417 | | | | 7.5 | 47.8 | 30 | 13.49639282 | | | | 8 | 47.4 | 28 | 13.96217417 | | | | 8.5 | 47.4 | 30 | 13.49639282 | | | | 9 | 47 | 30 | 13.47037202 | | | | 9.5 | 46.7 | | | | | | 10 | 46.5 | | | | | | | 45.9 | | | | | | 11 | | | | | | | 12 | 45.2 | | | | | | 15 | 42.6 | | | | | | 20 | 39.5 | | | | | | 25 | 35.7 | | | | | | 30 | 32 | | | | | | 35 | 29.2 | | | | | | 40 | 27.6 | | | | | | 45 | 26.5 | | | | | | 50 | 25.7 | | | | | | 60 | 24.4 | | | | | | 70 | 23.1 | | | | | | 80 | 21.9 | | | | | | 90 | 20.9 | | | | | | 100 | 20 | | | | | | 150 | 17.3 | | | | | | 200 | 15.6 | | | | | | 250 | 14.3 | | | | | | 300 | 13.1 | | | | | | 350 | 12.2 | | | | | | 400 | 11.3 | | | | | | 450 | 10.6 | | | | | | 500 | 9.97 | | | | | | 600 | 8.82 | | | | | ^aFrom Cristophorou and Olthoff. ¹⁴ equivalent to integrating a differential cross section over all angles for a specific excitation transition(s). The recent experimental total electron scattering cross sections³¹ and the theoretical calculations of Joshipura *et al.*³² based on the Complex Optical Method (COP), have Fig. 2. Momentum transfer cross sections for CF₃I. been compared with the recommended values of Christophorou and Olthoff. ¹⁴ The two sets of data ^{14,31} seem to agree fairly well, especially for energies above 80 eV. However, at lower energies (e.g., 11 eV) the data of Kawada *et al.* is 11% higher than the values quoted by Christophorou and Olthoff. Since there is no other recent experimental data, we chose to recommend the cross sectional values of Christophorou and Olthoff¹⁴ (Fig. 1, Table 3). To our knowledge, no measurements of the momentum
transfer and integral elastic cross section for CF₃I have been reported. The only experimental data in the literature is data derived from swarm measurements discussed by Christophorou and Olthoff¹⁴ for very low electron energies (0.5 eV). Recently, Bettega *et al.*²³ presented the first calculations on the momentum transfer and elastic integral (and differential) cross sections in the 5–30 eV electron energy range, by making use of a Schwinger multichannel method with pseudopotentials at the static exchange approximation level. These cross sections show two structures: the first below 7.5 eV Fig. 3. Integral elastic cross section for CF₃I (Bettega et al.²³). ^bFrom Bettega et al.²³ Table 4. Data on the electron scattering cross sections for CF₃I. Energies (E) are given in eV; cross sections are given in 10^{-20} m². Key: IEXS=integral elastic electron scattering cross section; IONXS=electron impact ionization cross section; TEAXS=total electron attachment cross section | E | IEXS ^a | E | $IONXS^b$ | E | $IONXS^{c}$ | E | $TEAXS^b$ | |-----|-------------------|----|-----------|------|-------------|-------|-----------| | 5 | 45.13802309 | 10 | 0.039 | 10 | 0.000225 | 0.004 | 1820 | | 5.5 | 46.68473228 | 12 | 0.146 | 12 | 0.316 | 0.005 | 1575 | | 6 | 48.32475445 | 14 | 0.551 | 14 | 1.022 | 0.006 | 1399 | | 6.5 | 49.41352903 | 16 | 1.38 | 16 | 1.83 | 0.007 | 1265 | | 7 | 49.51293135 | 18 | 2.68 | 18 | 2.633 | 0.008 | 1157 | | 7.5 | 48.72703988 | 20 | 3.73 | 20 | 3.398 | 0.009 | 1070 | | 8 | 47.28897056 | 22 | 4.2 | 25 | 5.101 | 0.01 | 997 | | 8.5 | 45.6807915 | 24 | 4.71 | 30 | 6.387 | 0.015 | 757 | | 9 | 44.09751828 | 26 | 5.27 | 40 | 7.953 | 0.02 | 623 | | 9.5 | 42.68394624 | 28 | 5.78 | 50 | 8.796 | 0.025 | 532 | | 10 | 41.52693803 | 30 | 6.09 | 60 | 9.194 | 0.03 | 464 | | 11 | 40.22742639 | 32 | 6.44 | 70 | 9.328 | 0.04 | 369 | | 12 | 40.83230831 | 34 | 6.7 | 80 | 9.296 | 0.05 | 302 | | 13 | 39.47192285 | 36 | 7.08 | 100 | 8.983 | 0.06 | 251 | | 14 | 37.53890715 | 38 | 7.43 | 120 | 8.542 | 0.07 | 212 | | 15 | 36.0355929 | 40 | 7.61 | 140 | 8.077 | 0.08 | 183 | | 16 | 34.74823476 | 45 | 7.93 | 160 | 7.629 | 0.09 | 158 | | 17 | 33.6096065 | 50 | 8.29 | 180 | 7.212 | 0.1 | 139 | | 18 | 32.59754473 | 55 | 8.46 | 200 | 6.83 | 0.15 | 76.1 | | 19 | 31.69822251 | 60 | 8.65 | 300 | 5.372 | 0.2 | 39.4 | | 20 | 30.89753305 | 65 | 8.76 | 400 | 4.427 | 0.25 | 19.9 | | 21 | 30.17927355 | 70 | 8.88 | 500 | 3.772 | 0.3 | 11.1 | | 22 | 29.52581683 | | | 700 | 2.926 | 0.4 | 3.38 | | 23 | 28.91962525 | | | 1000 | 2.21 | 0.5 | 0.93 | | 24 | 28.34537193 | | | 2000 | 1.246 | 0.6 | 0.266 | | 25 | 27.79167293 | | | 3000 | 0.885 | 0.7 | 0.114 | | 26 | 27.25206673 | | | | | 0.8 | 0.067 | | 27 | 26.72466439 | | | | | 0.9 | 0.044 | | 28 | 26.21086512 | | | | | 1 | 0.032 | | 29 | 25.71346453 | | | | | 1.5 | 0.015 | | 30 | 25.2348021 | | | | | 2 | 0.014 | | 29 | 25.71346453 | | | | | 2.5 | 0.017 | | 30 | 25.2348021 | | | | | 3 | 0.026 | | | | | | | | 3.5 | 0.07 | | | | | | | | 4 | 0.138 | | | | | | | | 4.25 | 0.148 | | | | | | | | 4.5 | 0.14 | | | | | | | | 4.75 | 0.122 | | | | | | | | 5 | 0.104 | | | | | | | | 5.25 | 0.1 | | | | | | | | 5.5 | 0.107 | | | | | | | | 5.75 | 0.115 | | | | | | | | 6 | 0.112 | | | | | | | | 6.25 | 0.102 | | | | | | | | 6.5 | 0.092 | | | | | | | | 6.75 | 0.098 | | | | | | | | 7 | 0.135 | | | | | | | | 7.25 | 0.134 | | | | | | | | 7.5 | 0.118 | ^aFrom Bettega et al.²³ and the second between 10 and 15 eV, attributable to E and A_1 symmetry representations, respectively. Since no other source of momentum transfer data is available in the literature, both sets of data 14,23 are recommended *albeit* over two different energy regions (Fig. 2, Table 3). The integral elastic cross section obtained by Bettega *et al.*²³ (Fig. 3, Table 4) are recommended since they are at present the only available data. Experimental data are thus urgently needed for both these processes. The total ionization cross sections for CF₃I reported in the literature include the experimental data of Jiao *et al.*, ³³ recommended by Christophorou and Olthoff, ¹⁴ and the theoretical calculations of Joshipura *et al.* ³² and Onthong *et al.* ³⁴ The measurements on the electron impact ionization of CF₃I ^bFrom Christophorou and Olthoff. ¹⁴ ^cFrom Onthong *et al.* ³⁴ Fig. 4. Ionization cross sections for CF₃I. using a mass spectrometer, result in a total cross section reaching a value of $9.0\pm0.9\times10^{-20}$ m² at 70 eV.³³ The recent calculations of Onthong *et al.*,³⁴ using the Deutsch–Märk formalism, agree well with the measured cross sectional values at all impact electron energies. The maximum difference in both values of the cross section is small (about 5% at the position of the cross section maximum). The data of Joshipura *et al.*^{32,35} agree well up to 70 eV, but their maximum position is shifted to higher energies when compared with the Deutsch–Märk formalism calculations. However, since Joshipura *et al.*'s data does not extend to lower energies, and there are no other experimental data available in the literature, the recommended ionization cross sectional values are those from Jiao *et al.*³³ and Onthong and *et al.*³⁴ (Fig. 4, Table 4). The total (dissociative) electron attachment cross sections for CF₃I suggested by Christophorou and Olthoff¹⁴ from an analysis of the available measured cross section data are shown in Fig. 5 and Table 4. There are to date no data reported on the total dissociation (into neutrals) cross sections, Fig. 5. Electron attachment cross section for CF_3I (Christophorou and Olthoff¹⁴). Fig. 6. Momentum transfer cross section for C₂F₄ (Winstead and McKoy²⁶). however the VUV photoabsorption studies of Mason *et al.*²⁴ show evidence of a dissociative character of band A. # 3. C₂F₄ Data on the elastic and inelastic electron scattering from C_2F_4 , including an extensive study of its spectroscopy using both photon absorption and electron scattering techniques, have recently been obtained in a comprehensive series of measurements.²⁷ The tetrafuoroethylene photoabsorption cross section studies of Eden et al., 27 in the energy range 3.9-10.8 eV, assigned the electronic excitation mainly in the C=C antibonding orbitals. The first transition, observed by electron energy loss spectroscopy measurements, was assigned to a $\pi \rightarrow \pi^*$, singlet \rightarrow triplet transition at 4.79 eV. Several other states are excited at higher energies showing strong coupling with vibrational excitation. Furthermore, in the $\pi \rightarrow \pi^*$, singlet - singlet excited state and in the ionic ground state, they observed particularly strong motion of two different modes of CF₂ stretching coupled to a C=C stretching series. These experiments may be compared with the recent work of Nakumura et al. 36 who calculated the excitation energies of the lowest singlet states of C₂F₄—unfortunately there is poor agreement with the recent experimental data. The experimental results are, however, consistent with the dominant dissociation pathways of C₂F₄ being the formation of CF₂ radicals, as is required for its use as a possible replacement feed gas for dry silicon etching. Jiang et al.³⁷ calculated the total cross sections for electron scattering by C_2F_4 , in the electron energy range 30–3000 eV, by means of an additivity rule (AR) and energy-dependent geometric additivity rule (EGAR) approaches. Their cross sections agree well for high electron energies; at low and intermediate energies (30–100 eV) the cross sections show large differences. Joshipura et al.³² performed calculations, based on the COP, in the 50–2000 eV region. Table 5. Data on the electron scattering cross sections for C_2F_4 . Key: IEXS=integral elastic electron scattering cross section; IONXS= electron impact ionization cross section; MTXS= momentum transfer cross section. Energies (E) are given in eV; cross sections are given in 10^{-20} m² | E | IEXS ^a | Е | IONXS ^b | Е | MTXS ^a | Е | MTXS ^a | |------|-------------------|------|--------------------|------|-------------------|------|-------------------| | 0.01 | 0.5694 | 20 | 1.29 | 0.01 | 24.365 | 17 | 15.3047 | | 0.1 | 0.42 | 30 | 2.75 | 0.1 | 22.3108 | 18 | 15.4809 | | 0.5 | 2.0206 | 40 | 3.89 | 0.5 | 16.9476 | 19 | 16.1926 | | 1 | 5.411 | 50 | 4.71 | 1 | 14.1637 | 20 | 17.3144 | | 1.5 | 8.7011 | 60 | 5.33 | 1.5 | 12.9466 | 21 | 16.4545 | | 2 | 11.4197 | 70 | 5.71 | 2 | 12.2876 | 22 | 15.8412 | | 2.5 | 13.4491 | 80 | 5.97 | 2.5 | 11.8079 | 23 | 15.6072 | | 3 | 14.787 | 90 | 6.09 | 3 | 11.3698 | 24 | 15.5162 | | 3.5 | 15.9821 | 100 | 6.16 | 3.5 | 10.9357 | 25 | 15.4766 | | 4 | 15.9341 | 150 | 6.09 | 4 | 10.5149 | 26 | 15.4486 | | 4.5 | 18.0437 | 200 | 5.82 | 4.5 | 10.2039 | 27 | 15.4119 | | 5 | 23.8787 | 300 | 5.21 | 5 | 12.2401 | 28 | 15.3555 | | 5.5 | 25.0965 | 400 | 4.68 | 5.5 | 9.5991 | 30 | 15.1656 | | 6 | 24.1962 | 500 | 4.26 | 6 | 9.3674 | 32.5 | 14.8002 | | 6.5 | 23.1963 | 600 | 3.94 | 6.5 | 11.0178 | 35 | 14.3748 | | 7 | 22.4434 | 700 | 3.69 | 7 | 13.145 | 37.5 | 13.9783 | | 7.5 | 22.3709 | 800 | 3.44 | 7.5 | 13.2906 | 40 | 13.6596 | | 8 | 23.1296 | 900 | 3.26 | 8 | 12.8248 | 42.5 | 13.4263 | | 9 | 24.6789 | 1000 | 3.11 | 8.5 | 12.5179 | 45 | 13.2444 | | 10 | 25.016 | 1500 | 2.47 | 9 | 12.9342 | 47.5 | 13.0465 | | 11 | 25.2023 | 2000 | 2.04 | 9.5 | 13.8109 | 50 | 12.7727 | | 12 | 25.4501 | | | 10 | 14.5988 | 55 | 12.0141 | | 13 | 25.3296 | | | 10.5 | 15.068 | 60 | 11.2869 | | 14 | 25.0215 | | | 11 | 15.3907 | 65 | 10.7851 | | 15 | 24.7248 | | | 11.5 | 15.7531 | 70 | 10.4 | | 16 | 24.6682 | | | 12 | 16.1516 | 75 | 9.992 | | 17 | 25.7959 | | | 12.5 | 16.4111 | 80 | 9.6727 | | 18 | 25.061 | | | 13 | 16.4023 | 85 | 9.3788 | | 19 | 26.0854 | | | 13.5 | 16.1967 | 90 | 9.0335 | | 20 | 26.2226 | | | 14 | 15.938 | 100 | 8.3559 | | 21 | 25.0519 | | | 14.5 | 15.7103 | | | | 22 | 24.6879 | | | 15 | 15.5375 | | | | 24 | 23.645 | | | 16 | 15.3407 | | | | 26 | 23.4057 | | | | | | | | 28
 23.2717 | | | | | | | | 30 | 22.9597 | | | | | | | | 32.5 | 22.6896 | | | | | | | | 35 | 22.7577 | | | | | | | | 37.5 | 22.1617 | | | | | | | | 40 | 21.5524 | | | | | | | | 45 | 20.5532 | | | | | | | | 50 | 19.8962 | | | | | | | | 60 | 18.2698 | | | | | | | | 70 | 17.0511 | | | | | | | | 80 | 15.9077 | | | | | | | | 90 | 14.4625 | | | | | | | | 100 | 13.3694 | | | | | | | ^aFrom Winstead and McKoy.²⁶ The only experimental data on the total cross section for C_2F_4 available is the recent paper of Szmytkowski *et al.*²⁵ Good agreement is found with the theory at higher energies and we therefore recommend to use this experimental data for the low energy cross sections. To date there is a lack of experimental data on both elastic and inelastic scattering cross sections from C_2F_4 . However, Winstead and Mckoy²⁶ have reported detailed theoretical analysis for elastic and inelastic collisions of low-energy electrons with C_2F_4 . The momentum transfer (Fig. 6, Table 5) and integral elastic electron scattering (Fig. 7, Table 5) cross sections were obtained by means of a Schwinger multichannel (SMC) variational method. Electron impact excitation cross sections were also reported for the T and V states arising from the $\pi \rightarrow \pi^*$ transition (the lowest with an excitation energy at 4.48 eV), as well as for eight other low-lying excited states. ²⁶ These data, together with electron transport properties and swarm analysis, were subsequently used by ^bFrom Joshipura et al.³² Fig. 7. Integral elastic electron scattering cross section for C_2F_4 (Winstead and McKoy²⁶). Yoshida *et al.*³⁸ to derive a self-consistent set of electron impact cross sections for C_2F_4 . There have been no reported experimental measurements of the total ionization cross section of C_2F_4 , but recently Joshipura *et al.*³² calculated the total ionization cross section using their independent atom approximation (Fig. 8, Table 5). The values are likely to be valid at high energies (>100 eV) but may be less reliable close to threshold. An experimental measurements of this cross section is therefore urgently required. Dissociative electron attachment has been studied in the energy range 0–15 eV and reveals a variety of anionic fragments but F^- is the dominant ion.³⁹ Total electron attachment rate constants have also been reported by Goyette *et al.*⁴⁰ in the 4–100 eV energy range. At present there are no data reported for the total dissociation (into neutrals) cross section. It must therefore be concluded that at present the data base C_2F_4 is far from satisfactory and that considerable effort, Fig. 8. Electron impact ionization cross section for C₂F₄ (Joshipura et al.³²). Fig. 9. Momentum transfer cross section for electron scattering by CF. both experimentally and theoretically, is required if the data necessary for modeling C_2F_4 plasmas is to be collected. ### 4. CF The total electron impact ionization cross section for the CF radical has been reported by Tarnovsky and Becker²¹ and by Tarnovsky *et al.*²² in the energy range from 10 to 200 eV. *Ab initio* calculations which derive the electron impact ionization cross section for the CF were performed by Bobeldijk *et al.*⁴¹ and by Deutsch *et al.*⁴² using the semiclassical Deutsch–Märk formalism. These calculations showed some disagreement between the measured and calculated cross sections, as the calculated cross sections are significantly higher than the experimental data. Joshipura *et al.*³⁵ calculated the electron impact ionization cross section for the CF in the energy range 20–2000 eV and found that their ionization cross section is 50% higher than the experimental data reported in Huo *et al.*⁴³ Lee et al. 44 studied electron–CF scattering in the energy range 1-500 eV using a complex optical potential to represent the electron-molecule interaction dynamics and the Schwinger variational iterative method combined with the distorted-wave approximation to solve the scattering equations. Lee et al. 44 calculated elastic differential (DCS), integral (ICS), and momentum-transfer (MTCS) cross sections as well as total (elastic and inelastic) and absorption electron scattering cross section. They compared their results with experimental and theoretical data for electron collisions with NO (which is an isoelectronic molecule of CF). Their ICS and MTCS show a shape resonance at around 15 eV, which is well above the ionization threshold and is probably a result of their relatively crude theoretical treatment. They found very good agreement between the ICS and the MTCS for electron scattering by CF and NO for incident energies above 20 eV. More recently Rozum *et al.*¹⁷ have used the refined R-matrix method⁴⁵ to investigate low energy (sub 10 eV) electron scattering from CF radicals. The rotationally TABLE 6. Data on the electron scattering cross sections for CF for selected energy points. Energies (E) are given in eV; cross sections are given in 10^{-21} m². The electronic archive presents the same data for 400 energy points. Key: IEXS= integral alstic scattering cross section; EXC1= excitation to the first excited $^4\Sigma^-$ state; EXSD= excitation to the dissociative A $^2\Sigma^+$ and B $^2\Delta$ states; EXSO= excitation to other states C $^2\Sigma^-$ and b $^4\Pi$; MTXS= momentum transfer cross section; DEA= estimated dissociative attachment cross section | Е | IEXS | EXC1 | EXSD | EXSO | Е | MTXS | Е | DEA | Е | DEA | |----------------|----------------------|------------------|--------|------------------|--------------|----------------------|--------------|--------------------|------|---------| | 0.110 | 4685.5737 | 0.0000 | 0.0000 | 0.0000 | 0.03 | 8055.9601 | 1.53 | 0.1678 | 3.66 | 10.5511 | | 0.210 | 2852.7898 | 0.0000 | 0.0000 | 0.0000 | 0.05 | 6854.7998 | 1.56 | 0.3406 | 3.68 | 10.0469 | | 0.310 | 1965.0991 | 0.0000 | 0.0000 | 0.0000 | 0.07 | 5742.9700 | 1.59 | 0.5294 | 3.71 | 9.5375 | | 0.410 | 1492.9552 | 0.0000 | 0.0000 | 0.0000 | 0.10 | 4324.6799 | 1.61 | 0.7350 | 3.73 | 9.0250 | | 0.510 | 1236.1290 | 0.0000 | 0.0000 | 0.0000 | 0.20 | 1405.8299 | 1.63 | 0.9578 | 3.76 | 8.5120 | | 0.610 | 1095.6062 | 0.0000 | 0.0000 | 0.0000 | 0.25 | 748.1040 | 1.66 | 1.1985 | 3.79 | 8.0005 | | 0.710 | 1020.0728 | 0.0000 | 0.0000 | 0.0000 | 0.28 | 523.1380 | 1.68 | 1.4576 | 3.81 | 7.4930 | | 0.810 | 980.5687 | 0.0000 | 0.0000 | 0.0000 | 0.30 | 422.4950 | 1.71 | 1.7355 | 3.84 | 6.9915 | | 0.910 | 955.6342 | 0.0000 | 0.0000 | 0.0000 | 0.35 | 286.9330 | 1.74 | 2.0324 | 3.86 | 6.4981 | | 1.010 | 927.6247 | 0.0000 | 0.0000 | 0.0000 | 0.40 | 250.2610 | 1.76 | 2.3486 | 3.88 | 6.0148 | | 1.110 | 889.3623 | 0.0000 | 0.0000 | 0.0000 | 0.45 | 260.4310 | 1.78 | 2.6842 | 3.91 | 5.5433 | | 1.210 | 843.9416 | 0.0000 | 0.0000 | 0.0000 | 0.50 | 290.2420 | 1.81 | 3.0389 | 3.93 | 5.0853 | | 1.310 | 796.6284 | 0.0000 | 0.0000 | 0.0000 | 0.60 | 365.1220 | 1.84 | 3.4126 | 3.96 | 4.6421 | | 1.410 | 750.8224 | 0.0000 | 0.0000 | 0.0000 | 0.70 | 436.6470 | 1.86 | 3.8048 | 3.98 | 4.2149 | | 1.510 | 708.2379 | 0.0000 | 0.0000 | 0.0000 | 0.80 | 486.2500 | 1.88 | 4.2149 | 4.01 | 3.8048 | | 1.610 | 669.7430 | 0.0000 | 0.0000 | 0.0000 | 0.85 | 495.0280 | 1.91 | 4.6421 | 4.03 | 3.4126 | | 1.710 | 635.8137 | 0.0000 | 0.0000 | 0.0000 | 0.91 | 487.5040 | 1.93 | 5.0853 | 4.06 | 3.0389 | | 1.810 | 606.6909 | 0.0000 | 0.0000 | 0.0000 | 1.00 | 444.5570 | 1.96 | 5.5433 | 4.09 | 2.6842 | | 1.910 | 582.4056 | 0.0000 | 0.0000 | 0.0000 | 1.05 | 412.9820 | 1.99 | 6.0148 | 4.11 | 2.3486 | | 2.010 | 562.7629 | 0.0000 | 0.0000 | 0.0000 | 1.10 | 383.7440 | 2.01 | 6.4981 | 4.14 | 2.0324 | | 2.110 | 547.3209 | 0.0000 | 0.0000 | 0.0000 | 1.15 | 366.0520 | 2.04 | 6.9915 | 4.16 | 1.7355 | | 2.210 | 535.3706 | 0.0000 | 0.0000 | 0.0000 | 1.18 | 378.4010 | 2.06 | 7.4930 | 4.18 | 1.4576 | | 2.310 | 525.8385 | 0.0000 | 0.0000 | 0.0000 | 1.20 | 539.9320 | 2.09 | 8.0005 | 4.21 | 1.1985 | | 2.410 | 516.5085 | 0.0000 | 0.0000 | 0.0000 | 1.25 | 366.5280 | 2.11 | 8.5120 | 4.24 | 0.9578 | | 2.510 | 484.1980 | 0.0000 | 0.0000 | 0.0000 | 1.30 | 276.4010 | 2.13 | 9.0250 | 4.26 | 0.7350 | | 2.610 | 523.6514 | 0.0000 | 0.0000 | 0.0000 | 1.40 | 184.6590 | 2.16 | 9.5375 | 4.28 | 0.5294 | | 2.710 | 512.2599 | 0.0000 | 0.0000 | 0.0000 | 1.50 | 148.8900 | 2.18 | 10.0469 | 4.31 | 0.3406 | | 2.910 | 500.5668 | 0.1620 | 0.0000 | 0.0000 | 1.60 | 132.6990 | 2.21 | 10.5511 | 4.34 | 0.1678 | | 3.010 | 483.8689 | 0.1643 | 0.0000 | 0.0000 | 1.70 | 125.6870 | 2.23 | 11.0477 | 4.36 | 0.0103 | | 3.210 | 459.2613 | 0.6173 | 0.0000 | 0.0000 | 1.80 | 123.9960 | 2.26 | 11.5346 | | | | 3.310 | 447.2842 | 1.1332 | 0.0000 | 0.0000 | 1.90 | 125.6700 | 2.29 | 12.0098 | | | | 3.510
3.610 | 426.7816
418.3335 | 2.3055
2.8065 | 0.0000 | 0.0000
0.0000 | 2.00
2.10 | 129.4350
134.3000 | 2.31
2.34 | 12.4714
12.9175 | | | | 3.810 | 403.8153 | 3.5517 | 0.0000 | 0.0000 | 2.10 | 134.3000 | 2.34 | 13.3468 | | | | 3.910 | 397.2076 | 3.8193 | 0.0000 | 0.0000 | 2.19 | 144.2880 | 2.38 | 13.7577 | | | | 4.110 | 384.3365 | 4.2218 | 0.0000 | 0.0000 | 2.40 | 148.3820 | 2.36 | 14.1493 | | | | 4.210 | 377.8509 | 4.3823 | 0.0000 | 0.0000 | 2.50 | 151.4310 | 2.43 | 14.5205 | | | | 4.410 | 364.5327 | 4.6701 | 0.0000 | 0.0000 | 2.60 | 153.1350 | 2.46 | 14.8705 | | | | 4.510 | 357.6910 | 4.8120 | 0.0000 | 0.0000 | 2.70 | 153.8170 | 2.48 | 15.1990 | | | | 4.710 | 343.7649 | 5.1199 | 0.0000 | 0.0000 | 2.80 | 153.5780 | 2.51 | 15.5056 | | | | 4.810 | 336.7680 | 5.2949 | 0.0000 | 0.0000 | 2.90 | 155.0680 | 2.54 | 15.7901 | | | | 5.010 | 322.9796 | 5.7031 | 0.0000 | 0.0000 | 3.00 | 136.9140 | 2.56 | 16.0527 | | | | 5.110 | 316.3087 | 5.9397 | 0.0000 | 0.0000 | 3.20 | 131.3830 | 2.59 | 16.2934 | | | | 5.310 | 303.6924 | 6.4717 | 0.0000 | 0.0000 | 3.40 | 119.5240 | 2.61 | 16.5127 | | | | 5.410 | 297.6961 | 6.7555 | 0.0000 | 0.0000 | 3.50 | 114.2200 | 2.63 | 16.7110 | | | | 5.610 | 288.4262 | 7.2952 | 0.0000 | 0.0000 | 3.60 | 110.6100 | 2.66 | 16.8890 | | | | 5.710 |
282.4692 | 7.5121 | 2.1317 | 0.0000 | 3.70 | 109.4570 | 2.68 | 17.0472 | | | | 5.810 | 279.0839 | 7.6589 | 1.4524 | 0.0000 | 3.80 | 111.8530 | 2.71 | 17.1864 | | | | 5.910 | 275.5477 | 7.7717 | 1.6437 | 0.0000 | 3.90 | 119.5670 | 2.73 | 17.3074 | | | | 6.010 | 270.8025 | 7.8790 | 1.7416 | 0.0000 | 4.00 | 133.5590 | 2.76 | 17.4111 | | | | 6.110 | 273.2562 | 8.0102 | 1.8284 | 0.0000 | 4.05 | 140.1370 | 2.79 | 17.4984 | | | | 6.210 | 268.4856 | 8.1927 | 1.9395 | 0.0000 | 4.10 | 141.5020 | 2.81 | 17.5701 | | | | 6.310 | 264.1357 | 8.4342 | 2.1111 | 0.0000 | 4.15 | 145.8860 | 2.84 | 17.6271 | | | | 6.410 | 258.4442 | 8.6875 | 2.3607 | 0.0000 | 4.20 | 136.4740 | 2.86 | 17.6705 | | | | 6.510 | 251.3322 | 8.8143 | 2.7210 | 0.0000 | 4.22 | 132.2720 | 2.88 | 17.7010 | | | | 6.610 | 243.5747 | 8.7882 | 3.1683 | 0.0000 | 4.25 | 120.3990 | 2.91 | 17.7196 | | | | 6.710 | 236.2838 | 8.6067 | 3.5371 | 0.0000 | 4.28 | 102.1640 | 2.93 | 17.7272 | | | | 6.810 | 230.0665 | 8.3091 | 3.7800 | 0.0000 | 4.30 | 88.4482 | 2.93 | 17.7272 | | | | 6.910 | 225.1128 | 7.9491 | 3.9316 | 0.0000 | 4.32 | 75.6414 | 2.96 | 17.7196 | | | | 7.010 | 221.4064 | 7.5707 | 4.0305 | 0.0000 | 4.35 | 61.1426 | 2.98 | 17.7010 | | | | 7.110 | 218.8328 | 7.2010 | 4.1050 | 0.0000 | 4.38 | 52.9656 | 3.01 | 17.6705 | | | Table 6. Data on the electron scattering cross sections for CF for selected energy points. Energies (E) are given in eV; cross sections are given in 10^{-21} m². The electronic archive presents the same data for 400 energy points. Key: IEXS= integral alstic scattering cross section; EXC1= excitation to the first excited $^4\Sigma^-$ state; EXSD= excitation to the dissociative A $^2\Sigma^+$ and B $^2\Delta$ states; EXSO= excitation to other states C $^2\Sigma^-$ and b $^4\Pi$; MTXS= momentum transfer cross section; DEA= estimated dissociative attachment cross section—Continued | Е | IEXS | EXC1 | EXSD | EXSO | Е | MTXS | Е | DEA | Е | DEA | |-------|----------|--------|--------|--------|-------|---------|------|---------|---|-----| | 7.210 | 217.2490 | 6.8545 | 4.1725 | 0.0000 | 4.40 | 50.1612 | 3.04 | 17.6271 | | | | 7.310 | 216.5871 | 6.5379 | 4.2431 | 0.0000 | 4.50 | 48.5057 | 3.06 | 17.5701 | | | | 7.410 | 217.1682 | 6.2546 | 4.3229 | 0.0000 | 4.60 | 50.5447 | 3.09 | 17.4984 | | | | 7.510 | 222.2243 | 5.9887 | 4.4097 | 0.0000 | 4.80 | 53.2614 | 3.11 | 17.4111 | | | | 7.610 | 255.9595 | 4.9796 | 4.0128 | 0.0000 | 5.00 | 54.7982 | 3.13 | 17.3074 | | | | 7.710 | 220.3991 | 5.1341 | 4.2830 | 0.0000 | 5.20 | 55.9350 | 3.16 | 17.1864 | | | | 7.810 | 216.8351 | 5.0570 | 4.4498 | 0.0000 | 5.40 | 56.8581 | 3.18 | 17.0472 | | | | 7.910 | 216.4358 | 4.9003 | 4.5602 | 0.0000 | 5.60 | 57.2544 | 3.21 | 16.8890 | | | | 8.010 | 216.5021 | 4.7318 | 4.6621 | 0.0000 | 5.80 | 63.3500 | 3.23 | 16.7110 | | | | 8.110 | 214.5247 | 4.5573 | 4.7790 | 0.0000 | 6.00 | 55.5656 | 3.26 | 16.5127 | | | | 8.210 | 217.9746 | 4.4112 | 4.8935 | 0.0000 | 6.30 | 47.1333 | 3.29 | 16.2934 | | | | 8.310 | 218.0792 | 4.2531 | 5.0678 | 0.0000 | 6.60 | 45.0039 | 3.31 | 16.0527 | | | | 8.410 | 218.2221 | 4.0937 | 5.3612 | 0.0217 | 6.80 | 37.5633 | 3.34 | 15.7901 | | | | 8.510 | 218.2804 | 3.9313 | 6.0451 | 0.0839 | 7.00 | 36.4323 | 3.36 | 15.5056 | | | | 8.610 | 218.5848 | 3.7854 | 7.4958 | 0.1658 | 7.50 | 48.5773 | 3.38 | 15.1990 | | | | 8.710 | 218.9885 | 3.6701 | 6.9975 | 0.2336 | 8.00 | 53.2194 | 3.41 | 14.8705 | | | | 8.810 | 218.7214 | 3.5671 | 6.3863 | 0.2832 | 8.50 | 53.8344 | 3.43 | 14.5205 | | | | 8.910 | 218.2882 | 3.4694 | 6.2656 | 0.3278 | 9.00 | 48.0363 | 3.48 | 13.7577 | | | | 9.010 | 217.7033 | 3.3813 | 6.2923 | 0.3729 | 9.50 | 41.2731 | 3.51 | 13.3468 | | | | 9.110 | 216.9169 | 3.3103 | 6.3470 | 0.4192 | 10.00 | 56.8152 | 3.54 | 12.9175 | | | | 9.210 | 215.8539 | 3.2669 | 6.3937 | 0.4653 | | | 3.56 | 12.4714 | | | | 9.310 | 214.2592 | 3.2650 | 6.4805 | 0.5097 | | | 3.59 | 12.0098 | | | | 9.410 | 211.1859 | 3.3209 | 6.8876 | 0.5510 | | | 3.61 | 11.5346 | | | | 9.510 | 210.5804 | 3.4478 | 6.5011 | 0.5888 | | | 3.63 | 11.0477 | | | summed elastic DCS of Rozum and Tennyson¹⁹ are more structured in the nonforward direction than the data of Lee *et al.*⁴⁴ and predict much stronger scattering in the forward direction. The difference between two results may be attributed to the target model and a level of treatment of scattering. It is well known that electron scattering by polar molecules are dominated by dipole interactions and corresponding DCS should observe a maximum in the strongly forward direction. The MTCS cross section for the CF radical, calculated using the POLYDCS program of Sanna and Gianturco, 46 and corresponding data are presented in Fig. 9 and Table 6. Contrary to the results of Lee $\it et al., ^{44}$ who calculated MTCS in the energy region (1–500 eV), the magnitude of our cross section is higher at the scattering energy 1 eV and lower at 10 eV. The MTCS presented here show low energy structures which can be ascribed to resonances. The position of the energetically lowest lying resonant structure corresponds to the $^1\Delta$ resonance observed in the elastic integral cross section. Low energy collisional elastic and electron impact excitation integral cross sections for CF have also been calculated in the scattering energy range 100 meV-10 eV using the *R*-matrix theory. The details of these calculations have been reported elsewhere. These calculations show that the electron scattering processes by the CF radical, as well as CF₂ and CF₃, are dominated by elastic processes; the total and elastic cross sections for these radicals are therefore essentially the same. Figure 10 and Table 6 present the total elastic cross section (10A), electron impact excitation cross sections for the excitation of the metastable a $^4\Sigma^-$ state (10B), dissociative A $^2\Sigma^+$ and B $^2\Delta$ states (10C), and other states C $^2\Sigma^-$ and b $^4\Pi$ (10D). All the cross section data for CF is given at its equilibrium geometry. Corresponding cross section data are presented in the electronic archive. The cross sections are Fig. 10. Total elastic cross sections for electron scattering off CF (A); and electron impact excitation cross sections for the excitation of the metastable a $^4\Sigma^-$ state (B), dissociative A $^2\Sigma^+$ and B $^2\Delta$ states (C) and other states C $^2\Sigma^-$ and b $^4\Pi$ (D). Fig. 11. Dissociative electron attachment cross section for CF (solid line) estimated as 50% of the cross section for the excitation of the $^{1}\Sigma^{+}$ resonance (dashed line). rich in resonance structures which arise from the capture of the incident electron to form a temporary negative ion. These structures above about 5 eV may be artificial and attributable to pseudoresonances due to the presence of the Rydberg $^2\Sigma^+$ state and diffuse basis functions in the calculations (see Ref. 17). At lower energies these calculations show the presence of three shape resonances of symmetries ${}^3\Sigma^-$, ${}^1\Delta$, and ${}^1\Sigma^+$ with a position and width of 0.91 eV and 0.75 eV for ${}^1\Delta$, and 2.19 and 1.73 eV for ${}^1\Sigma^+$ resonance at equilibrium. The position of the ${}^3\Sigma^-$ resonance is very close to zero at the equilibrium bond length 2.44 a_0 . As the C–F bond is stretched to 2.5 a_0 the ${}^3\Sigma^-$ resonance becomes bound and at 3.3 a_0 the ${}^1\Delta$ also becomes bound. The resonance parameters suggest that the ${}^1\Sigma^+$ resonance will also become bound, but only at bond lengths larger than 3.6 a_0 . Some of these resonances may lead to the dissociation of the molecule in a dissociative electron attachment which leaves stable anionic fragments. These may play a major role in plasma etching. In order to determine the fate of each resonance it is necessary to consider the energy balance equation for the DEA process, as the incident electron may not have enough energy to dissociate a molecule. Thus, the energy balance equation for the DEA process involving the $^1\Sigma^+$ resonance of CF is $$\Delta E = D_0(CF) - A(F) + KER \tag{1}$$ where $D_0(CF) = 5.5 \pm 0.1 \text{ eV}^{47}$ is the dissociation energy of CF, $A(F) = 3.4 \text{ eV}^{48}$ is the electronic affinity of F, and KER is the kinetic energy release providing momentum to the dissociative fragments. The threshold for DEA is given by KER=0. Equation (1) then gives the energy $\Delta E = 2.10 \text{ eV}$. The energy of an incident electron, forming the $^{1}\Sigma^{+}$ resonance, is 2.19 eV at equilibrium which may be enough to dissociate CF. The use of the reflection approximation implies that about 20% of the $^{1}\Sigma^{+}$ resonance may asymptotically dissociate to $C(^{1}D) + F^{-}(^{1}S)$, as the electronic affinity of F is higher than the affinity of C. The remaining 80% forms a negative ion $(CF^{-})^*$. Using the same approxima- Fig. 12. Total elastic cross sections for electron scattering off CF₂ (A); electron impact excitation cross sections for the excitation of the metastable ${}^{3}B_{1}$ state (B), bound and radiative ${}^{1}B_{1}$ state (C) and other dissociative ${}^{3}A_{2}$, ${}^{1}A_{2}$ and ${}^{3}B_{2}$ states (D). tion, the $^3\Sigma^-$ and $^1\Delta$ resonances form vibrationally excited negative ions $(CF^-)^*$ which do not dissociate. It is likely that states of $(CF^-)^*$ resonances which do not lead to DEA will autoionize leading to vibrational excitation of the target. The widths of resonances were not taken into account in the above estimates. The dissociative electron attachment (DEA) cross section can be estimated as 50% of the cross section for the excitation of the $^1\Sigma^+$ resonance (Fig. 11, Table 6). This estimate is very crude and gives an error value of about 50%. Following this assumption, the DEA cross section for CF has a peak at 1.76×10^{-20} m² for the electron energy of 2.19 eV. The DEA cross section data can be found in the electronic archive. The threshold for dissociation into
neutrals for the A $^2\Sigma^+$ state of CF is estimated to be 5.87 eV (v=5). All vibrational states of A $^2\Sigma^+$ above v=5 dissociate to C(3P)+F(2P); vibrational states below v=5 may dissociate to the same limit. Our calculations also show that all vibrational states of the B $^2\Delta$ state dissociate to C(3P)+F(2P). The dissociation of both states occurs via an avoided crossing. In conclusion, the recent refined theoretical calculations on electron interactions with CF has led to a deeper understanding of its dissociation properties and role in fluorocarbon plasmas. Similar studies have been performed for the related radicals CF_2 and CF_3 and these will now be discussed. # 5. CF₂ The ionization cross section for the CF_2 radical has been reported by Tarnovsky and Becker²¹ and by Tarnovsky et al.²² in the energy range 10–200 eV. Later Deutsch et al.⁴² calculated the electron impact ionization cross section for CF_2 using the semiclassical Deutsch–Märk formalism and TABLE 7. Data on the electron scattering cross sections for CF_2 for selected energy points. Energies (E) are given in eV; cross sections are given in 10^{-21} m². The electronic archive presents the same data for 400 energy points. Key: IEXS=integral alstic scattering cross section; EXCM=excitation to the first excited metastable 3B_1 state; EXSB=excitation to the bound and radiative 1B_1 state; EXSO=excitation to other dissociative 3A_2 , 1A_2 and 3B_2 states; MTXS=momentum transfer cross section; DEA=estimated dissociative attachment cross section | E | IEXS | EXCM | EXSB | EXSO | Е | MTXS | Е | DEA | |----------------|--------------------|---------|--------|--------|------|----------|------|----------| | 0.110 | 353.8716 | 0.0000 | 0.0000 | 0.0000 | 0.12 | 284.3787 | 0.54 | 3.4609 | | 0.210 | 228.5882 | 0.0000 | 0.0000 | 0.0000 | 0.15 | 267.3979 | 0.56 | 4.9342 | | 0.310 | 182.7474 | 0.0000 | 0.0000 | 0.0000 | 0.18 | 257.1102 | 0.58 | 6.8380 | | 0.410 | 159.4868 | 0.0000 | 0.0000 | 0.0000 | 0.20 | 252.4128 | 0.61 | 9.3229 | | 0.510 | 146.5805 | 0.0000 | 0.0000 | 0.0000 | 0.22 | 248.8636 | 0.63 | 12.6073 | | 0.610 | 141.4606 | 0.0000 | 0.0000 | 0.0000 | 0.25 | 245.0588 | 0.66 | 17.0147 | | 0.710 | 149.7661 | 0.0000 | 0.0000 | 0.0000 | 0.28 | 242.5394 | 0.69 | 23.0339 | | 0.810 | 208.8477 | 0.0000 | 0.0000 | 0.0000 | 0.30 | 241.3866 | 0.71 | 31.4168 | | 0.910 | 294.7711 | 0.0000 | 0.0000 | 0.0000 | 0.32 | 240.5732 | 0.74 | 43.3335 | | 1.010 | 183.0762 | 0.0000 | 0.0000 | 0.0000 | 0.35 | 239.8948 | 0.76 | 60.5933 | | 1.110 | 139.6836 | 0.0000 | 0.0000 | 0.0000 | 0.38 | 239.7939 | 0.79 | 85.8479 | | 1.210 | 122.7824 | 0.0000 | 0.0000 | 0.0000 | 0.40 | 240.0311 | 0.81 | 122.2926 | | 1.310 | 113.7788 | 0.0000 | 0.0000 | 0.0000 | 0.42 | 240.5149 | 0.83 | 171.1748 | | 1.410 | 107.8898 | 0.0000 | 0.0000 | 0.0000 | 0.45 | 241.7319 | 0.86 | 224.3300 | | 1.510 | 103.5136 | 0.0000 | 0.0000 | 0.0000 | 0.48 | 243.6127 | 0.88 | 257.4859 | | 1.610 | 99.9867 | 0.0000 | 0.0000 | 0.0000 | 0.50 | 245.2977 | 0.91 | 249.2274 | | 1.710 | 96.9892 | 0.0000 | 0.0000 | 0.0000 | 0.52 | 247.3888 | 0.94 | 210.0358 | | 1.810 | 94.3482 | 0.0000 | 0.0000 | 0.0000 | 0.55 | 251.4449 | 0.96 | 164.8515 | | 1.910 | 91.9618 | 0.0000 | 0.0000 | 0.0000 | 0.58 | 256.9021 | 0.99 | 126.9306 | | 2.010 | 89.7654 | 0.0000 | 0.0000 | 0.0000 | 0.60 | 261.5455 | 1.01 | 98.4208 | | 2.110 | 87.7146 | 0.0000 | 0.0000 | 0.0000 | 0.62 | 267.2125 | 1.03 | 77.613 | | 2.210 | 85.7750 | 0.0000 | 0.0000 | 0.0000 | 0.65 | 278.2098 | 1.06 | 62.3859 | | 2.310 | 83.9134 | 0.0000 | 0.0000 | 0.0000 | 0.68 | 293.3366 | 1.09 | 51.0704 | | 2.410 | 82.0741 | 0.0000 | 0.0000 | 0.0000 | 0.70 | 306.6459 | 1.11 | 42.4997 | | 2.510 | 79.9085 | 1.9401 | 0.0000 | 0.0000 | 0.72 | 323.3961 | 1.13 | 35.8801 | | 2.610 | 78.5771 | 4.1955 | 0.0000 | 0.0000 | 0.75 | 357.4202 | 1.16 | 30.6722 | | 2.710 | 77.3263 | 5.1657 | 0.0000 | 0.0000 | 0.78 | 406.3732 | 1.18 | 26.5054 | | 2.810 | 76.1371 | 5.7443 | 0.0000 | 0.0000 | 0.80 | 449.5361 | 1.21 | 23.1202 | | 2.910 | 75.0041 | 6.1178 | 0.0000 | 0.0000 | 0.82 | 500.7407 | 1.24 | 20.3323 | | 3.010 | 73.9243 | 6.3666 | 0.0000 | 0.0000 | 0.85 | 578.0835 | 1.26 | 18.0080 | | 3.110 | 72.8956 | 6.5339 | 0.0000 | 0.0000 | 0.88 | 604.3552 | 1.28 | 16.0489 | | 3.210 | 71.9164 | 6.6462 | 0.0000 | 0.0000 | 0.90 | 567.2395 | 1.31 | 14.3811 | | 3.310 | 70.9853 | 6.7208 | 0.0000 | 0.0000 | 0.92 | 497.5880 | 1.34 | 12.948 | | 3.410 | 70.1006 | 6.7696 | 0.0000 | 0.0000 | 0.95 | 385.9371 | 1.36 | 11.7085 | | 3.510 | 69.2610 | 6.8011 | 0.0000 | 0.0000 | 0.98 | 303.4513 | 1.38 | 10.6268 | | 3.610 | 68.4650 | 6.8216 | 0.0000 | 0.0000 | 1.00 | 265.9206 | 1.41 | 9.6770 | | 3.710 | 67.7111 | 6.8358 | 0.0000 | 0.0000 | 1.05 | 211.1838 | 1.43 | 8.8378 | | 3.810 | 66.9975 | 6.8475 | 0.0000 | 0.0000 | 1.10 | 185.2536 | 1.46 | 8.0922 | | 3.910 | 66.3226 | 6.8600 | 0.0000 | 0.0000 | 1.20 | 163.4235 | 1.49 | 7.4262 | | 4.010 | 65.6847 | 6.8759 | 0.0000 | 0.0000 | 1.30 | 154.2781 | 1.51 | 6.8285 | | 4.210 | 64.5122 | 6.9280 | 0.0000 | 0.0000 | 1.50 | 144.8399 | 1.51 | 0.020 | | 4.310 | 63.9738 | 6.9689 | 0.0000 | 0.0000 | 1.60 | 141.4441 | | | | 4.510 | 62.9830 | 7.0930 | 0.0000 | 0.0000 | 1.80 | 135.5656 | | | | 4.610 | 62.5266 | 7.1815 | 0.0000 | 0.0000 | 1.90 | 132.9141 | | | | 4.810 | 61.6819 | 7.4254 | 0.0000 | 0.0000 | 2.10 | 128.0526 | | | | 5.010 | 60.9152 | 7.7783 | 0.0000 | 0.0000 | 2.30 | 123.7326 | | | | 5.210 | 60.2105 | 8.2624 | 0.0000 | 0.0000 | 2.50 | 119.9931 | | | | 5.310 | 59.8752 | 8.5613 | 0.0000 | 0.0000 | 2.60 | 118.2275 | | | | 5.510 | 59.2498 | 9.1961 | 0.2671 | 0.0000 | 2.80 | 115.1308 | | | | 5.610 | 58.9691 | 9.4598 | 0.5196 | 0.0000 | 2.90 | 113.7800 | | | | 5.710 | 58.6899 | 9.7118 | 0.7774 | 0.0000 | 3.00 | 112.5529 | | | | 5.810 | 58.4134 | 9.9324 | 1.0335 | 0.0000 | 3.10 | 111.4434 | | | | 5.910 | 58.1402 | 10.1061 | 1.2829 | 0.0000 | 3.10 | 110.4473 | | | | 6.010 | 57.8708 | 10.1001 | 1.5231 | 0.0000 | 3.40 | 108.7766 | | | | 6.210 | | 10.2583 | 1.9717 | | 3.40 | 106.6117 | | | | | 57.3452
57.0897 | 10.2383 | | 0.0000 | 4.00 | 106.0660 | | | | 6.310 | | | 2.1798 | | | | | | | 6.510 | 56.5942
56.3540 | 9.8772 | 2.5657 | 0.0000 | 4.40 | 105.9498 | | | | 6.610 | 56.3540 | 9.6685 | 2.7451 | 0.0000 | 4.60 | 106.3737 | | | | 6.710 | 56.1184 | 9.4357 | 2.9165 | 0.0000 | 4.80 | 107.1415 | | | | 6.910
7.010 | 55.6598 | 8.9326 | 3.2389 | 0.0000 | 5.20 | 109.9469 | | | | (010) | 55.4358 | 8.6757 | 3.3914 | 0.0000 | 5.40 | 112.1134 | | | TABLE 7. Data on the electron scattering cross sections for CF_2 for selected energy points. Energies (E) are given in eV; cross sections are given in 10^{-21} m². The electronic archive presents the same data for 400 energy points. Key: IEXS=integral alstic scattering cross section; EXCM=excitation to the first excited metastable 3B_1 state; EXSB=excitation to the bound and radiative 1B_1 state; EXSO=excitation to other dissociative 3A_2 , 1A_2 and 3B_2 states; MTXS = momentum transfer cross section; DEA=estimated dissociative attachment cross section—Continued | Е | IEXS | EXCM | EXSB | EXSO | Е | MTXS | Е | DEA | |-------|---------|--------|--------|--------|-------|----------|---|-----| | 7.210 | 54.9964 | 8.1736 | 3.6820 | 0.0000 | 5.80 | 121.1412 | | | | 7.310 | 54.7803 | 7.9337 | 3.8211 | 0.0000 | 6.00 | 129.4506 | | | | 7.410 | 54.5665 | 7.7035 | 3.9566 | 0.0000 | 6.20 | 137.3980 | | | | 7.610 | 54.1446 | 7.2744 | 4.2176 | 0.0000 | 6.40 | 135.8350 | | | | 7.710 | 53.9365 | 7.0760 | 4.3435 | 0.0000 | 6.50 | 133.4048 | | | | 7.910 | 53.5268 | 6.7105 | 4.5865 | 0.0000 | 6.65 | 136.8174 | | | | 8.010 | 53.3255 | 6.5427 | 4.7037 | 0.0000 | 6.70 | 140.7393 | | | | 8.210 | 52.9318 | 6.2347 | 4.9294 | 0.0000 | 6.80 | 145.4486 | | | | 8.410 | 52.5524 | 5.9602 | 5.1436 | 0.0000 | 6.90 | 128.3499 | | | | 8.510 | 52.3694 | 5.8343 | 5.2463 | 0.0000 | 6.95 | 117.0814 | | | | 8.710 | 52.0191 | 5.6028 | 5.4432 | 0.0000 | 7.10 | 99.0641 | | | | 8.810 | 51.8530 | 5.4963 | 5.5375 | 0.0000 | 7.20 | 94.9494 | | | | 9.010 | 51.5417 | 5.2982 | 5.7182 | 0.0000 | 8.20 | 89.8992 | | | | 9.110 | 51.3964 | 5.2025 | 5.8063 | 0.0047 | 8.50 | 89.6317 | | | | 9.210 | 51.2590 | 5.1105 | 5.8887 | 0.0197 | 8.80 | 89.4674 | | | | 9.310 | 51.1310 | 5.0250 | 5.9700 | 0.0354 | 9.00 | 89.4246 | | | | 9.410 | 51.0135 | 4.9460 | 6.0489 | 0.0508 | 9.20 | 89.4474 | | | | 9.410 | 51.0135 | 4.9460 | 6.0489 | 0.0508 | 9.20 | 89.4474 | | | | 9.510 | 50.9072 | 4.8728 | 6.1254 | 0.0653 | 9.50 | 89.6196 | | | | 9.610 | 50.8123 | 4.8045 | 6.1996 | 0.0819 | 9.80 | 89.9676 | | | | 9.710 | 50.7296 | 4.7407 | 6.2716 | 0.0963 | 10.00 | 90.2975 | | | found that their cross section lies significantly above the measured data. Recently Joshipura $et\ al.^{35}$ calculated the electron impact ionization cross section for the CF_2 radical in the energy range 20-2000 eV using the complex scattering potential approach. Their cross section is also higher (by about 50%) than the experimental one. This disagreement between experimental and theoretical results is certainly due to the crude models used in the calculations. No experimental data on low energy (below $10\ eV$) electron collisional cross sections for the CF_2 radical have been reported in the literature. Figure 12(A) displays the total integral elastic and excitation cross sections for CF₂ at its equilibrium geometry and energies below 10 eV obtained using the UK-molecular Fig. 13. Dissociative electron attachment cross section for the CF_2 radical (solid line) estimated as 50% of the cross section for the excitation of the 2B_1 resonance (dashed line). energy, eV R-matrix method. ⁴⁵ Details of these calculations can be found in Rozum $et\ al.$ ¹⁶ The electron impact excitation cross sections are divided into three groups: the cross section for the excitation of the metastable 3B_1 state [Fig. 12(B)], the cross section for the excitation of the bound and radiative 1B_1 state [Fig. 12(C)], and the sum of
cross sections for the excitation of the remaining dissociative 3A_2 , 1A_2 , and 3B_2 states [Fig. 12(D)]. The corresponding data are presented in Table 7. The main feature in the elastic cross section (Fig. 12A) is the presence of a shape resonance of the ${}^{2}B_{1}$ symmetry. At equilibrium geometry this resonance has position and width of 0.95 and 0.18 eV, respectively. This is a shape resonance which binds an extra electron in $3b_{1}$ orbital. Performing calculations, where one C–F bond was stretched from 1.8 to Fig. 14. Momentum transfer cross section for electron collisions with the ${\rm CF_2}$ radical. Fig. 15. Total elastic cross sections for electron scattering off CF₃ (A); electron impact excitation cross sections for the excitation of the first excited A ${}^{2}A_{2}$ state (B), second excited B ${}^{2}E$ state (C) and third excited 2 ${}^{2}E$ state (D). 3.6 a_0 with the other C-F bond and a CFC angle frozen, we found that the 2B_1 resonance becomes bound for C-F bond lengths greater than 3.2 a_0 . The reflection approximation suggests that approximately 5% of the 2B_1 resonance asymptotically may dissociate to CF(${}^2\Pi$)+F-(1 S) and 95% of the resonance forms a vibrationally excited negative ion (CF $_2^-$)*. The DEA cross section for CF $_2$, estimated as 50% of the cross section for the excitation of the 2B_1 resonance, peaks at 25.76×10^{-20} m 2 for the incident electron energy of 0.95 eV. As was mentioned earlier, this assumption is crude and gives an error about 50%. The DEA cross section itself is shown in Fig. 13 and the cross section data can be found in Table 7. The excitation process ${}^{1}A_{1} \rightarrow {}^{3}B_{1}$ [Fig. 12(B)] is dominated by the ${}^{2}A_{1}$ shape resonance with a position and width of 5.61 and 2.87 eV, respectively, at equilibrium. This resonance is very broad and short lived and could not be detected at a C-F bond length beyond 2.7 a_{0} . Figure 14 and Table 7 display the MTCS cross section and its data in the scattering energy range 0.1-10 eV. This cross section was obtained using the POLYDCS program and K matrices generated during R-matrix calculations. The cross section contains several resonant structures. The lowest in energy structure corresponds to the 2B_1 resonance also present in the elastic cross section. Our calculations suggest that all vibrational states of the 3A_2 , 1A_2 , and 3B_2 states of CF₂ dissociate to CF(${}^2\Pi$) + F(2 P). #### 6. CF₃ The absolute partial electron-impact ionization cross section for CF₃ was measured by Tarnovsky and Becker²¹ and may be compared with the recent calculations of Joshipura et al.32 The agreement is once again good at high energies but the theory may be less reliable at energies below 100 eV. Diniz et al. 49 calculated the elastic differential cross sections for electron collision with CF₃ in the energy range below 30 eV using the Schwinger multichannel method at the staticexchange level. They found that the elastic differential cross section for electron scattering from CF₃ was very similar to that from CF₃H reflecting that the role of the H atom in the scattering is small. Furthermore, the similarity between the two differential cross sections improves as the incident energy of the electron increases and the effect of the local charge cloud/molecular structure is reduced. Differential cross sections obtained by Rozum et al. 19 agree reasonably with Diniz et al.'s results, but are about 40% higher in the forward direction. No experimental data on low-energy (sub 10 eV) collisional integral cross sections for the CF₃ radical have been reported. Integral cross sections for low-energy electron scattering by the CF_3 radical have been calculated using the R-matrix method and a target model which gives satisfactory target parameters. Details of the target and scattering calculations have been given in Rozum *et al.*¹⁸ and will not be repeated here. The elastic cross section and electron impact excitation cross sections for the excitation to the A^2A_2 , B^2E , and 2^2E are presented in Fig. 15. The corresponding cross section data are given in Table 8. All the cross sections are presented here at the equilibrium geometry of CF_3 . Present calculations show the absence of any low-lying resonances which means that CF_3 will not undergo dissociative electron attachment (DEA). All our calculations show the presence of a bound state of the 1A_1 symmetry with a vertical binding energy estimated from pure bound state calculations to be 0.6 eV. The momentum transfer cross section for electron scattering by CF_3 are shown in Fig. 16. Table 8 presents the MTCS data for CF_3 . It can be seen that the momentum transfer cross section does not have any resonance-like features, again in contrast to those of CF and CF_2 . #### 7. Conclusions In this paper we present new and summarize existing recommended data on the electron collision cross sections with the radicals CF, CF₂, and CF₃, and the etching gases CF₃I and C_2F_4 . Numerical values are tabulated in the paper and can also be found in the electronic archive (www.nist.gov/srd/jprcd.htm and click on supplemental information). Elastic and excitation integral and momentum transfer cross sections for the CF_x radicals are calculated in the energy range 100 meV-10 eV and presented in a form relevant to the modeling of etching plasmas. Thus, electron impact excitation cross sections were divided into three main groups: (i) excitation of metastable states, (ii) excitation of dissociative states, and (iii) excitation of other states. Even though there is no experimental data on the integral cross sections for the CF_x radicals available, we regard our results as reliable for energies above 100 meV. This confidence is in Table 8. Data on the electron scattering cross sections for CF_3 for selected energy points. Energies (E) are given in eV; cross sections are given in 10^{-21} m². The electronic archive presents the same data for 400 energy points. Key: IEXS= integral alstic scattering cross section; EXC1= excitation to the first excited A 2A_2 state; EXS2= excitation to the second excited B 2E state; EXS3= excitation to the third excited 2 2E state; MTXS= momentum transfer cross section | Е | IEXS | EXCM | EXSB | EXSO | E | MTXS | |-------|-----------|--------|--------|--------|------|-----------| | 0.110 | 1554.5261 | 0.0000 | 0.0000 | 0.0000 | 0.05 | 3101.3986 | | 0.210 | 1015.3164 | 0.0000 | 0.0000 | 0.0000 | 0.10 | 2508.6964 | | 0.310 | 800.8319 | 0.0000 | 0.0000 | 0.0000 | 0.15 | 2243.2498 | | 0.410 | 680.7397 | 0.0000 | 0.0000 | 0.0000 | 0.20 | 2064.3855 | | 0.610 | 545.9769 | 0.0000 | 0.0000 | 0.0000 | 0.30 | 1808.0135 | | 0.710 | 503.4147 | 0.0000 | 0.0000 | 0.0000 | 0.35 | 1708.5579 | | 0.810 | 469.8514 | 0.0000 | 0.0000 | 0.0000 | 0.40 | 1621.2515 | | 1.010 | 419.8900 | 0.0000 | 0.0000 | 0.0000 | 0.50 | 1473.8914 | | 1.110 | 400.6529 | 0.0000 | 0.0000 | 0.0000 | 0.55 | 1410.8940 | | 1.210 | 384.0807 | 0.0000 | 0.0000 | 0.0000 | 0.60 | 1353.6554 | | 1.410 | 356.8257 | 0.0000 | 0.0000 | 0.0000 | 0.70 | 1253.5653 | | 1.510 | 345.4166 | 0.0000 | 0.0000 | 0.0000 | 0.75 | 1209.5944 | | 1.610 | 335.1444 | 0.0000 | 0.0000 | 0.0000 | 0.80 | 1169.0578 | | 1.810 | 317.3100 | 0.0000 | 0.0000 | 0.0000 | 0.90 | 1096.8330 | | 1.910 | 309.4867 | 0.0000 | 0.0000 | 0.0000 | 0.95 | 1064.5344 | | 2.110 | 295.5581 | 0.0000 | 0.0000 | 0.0000 | 1.10 | 979.9779 | | 2.210 | 289.3161 | 0.0000 | 0.0000 | 0.0000 | 1.20 | 932.0004 | | 2.410 | 278.0213 | 0.0000 | 0.0000 | 0.0000 | 1.40 | 851.1462 | | 2.510 | 272.8916 | 0.0000 | 0.0000 | 0.0000 | 1.50 | 816.6578 | | 2.610 | 268.0659 | 0.0000 | 0.0000 | 0.0000 | 1.60 | 785.3310 | | | | | | | | | | 2.810 | 259.2303 | 0.0000 | 0.0000 | 0.0000 | 1.80 | 730.4621 | | 2.910 | 255.1809 | 0.0000 | 0.0000 | 0.0000 | 1.90 | 706.2763 | | 3.110 | 247.7387 | 0.0000 | 0.0000 | 0.0000 | 2.10 | 663.2246 | | 3.210 | 244.3197 | 0.0000 | 0.0000 | 0.0000 | 2.20 | 644.0072 | | 3.310 | 241.0870 | 0.0000 | 0.0000 | 0.0000 | 2.30 | 626.1432 | | 3.510 | 235.1415 | 0.0000 | 0.0000 | 0.0000 | 2.50 | 594.0355 | | 3.710 | 229.8320 | 0.0000 | 0.0000 | 0.0000 | 2.70 | 566.1666 | | 3.810 | 227.3964 | 0.0000 | 0.0000 | 0.0000 | 2.75 | 559.8018 | | 3.910 | 225.0975 | 0.0000 | 0.0000 | 0.0000 | 2.80 | 568.7307 | | 4.010 | 222.9286 | 0.0000 | 0.0000 | 0.0000 | 2.85 | 547.6783 | | 4.210 | 218.9554 | 0.0000 | 0.0000 | 0.0000 | 3.00 | 527.5409 | | 4.310 | 217.1387 | 0.0000 | 0.0000 | 0.0000 | 3.10 | 520.9320 | | 4.510 | 213.8160 | 0.0000 | 0.0000 | 0.0000 | 3.30 | 502.7043 | | 4.610 | 212.2986 | 0.0000 | 0.0000 | 0.0000 | 3.40 | 494.5261 | | 4.810 | 209.5245 | 0.0000 | 0.0000 | 0.0000 | 3.60 | 479.8417 | | 4.910 | 208.2574 | 0.0000 | 0.0000 | 0.0000 | 3.70 | 473.2624 | | 5.010 | 207.0637 | 0.0000 | 0.0000 | 0.0000 | 3.80 | 467.1440 | | 5.210 | 204.8773 | 0.0000 | 0.0000 | 0.0000 | 4.00 | 453.6261 | | 5.310 | 203.8756 | 0.0000 | 0.0000 | 0.0000 | 4.20 | 446.6361 | | 5.510 | 202.0341 | 0.0000 | 0.0000 | 0.0000 | 4.60 | 431.0631 | | 5.610 | 201.1863 | 0.0000 | 0.0000 | 0.0000 | 4.80 | 424.6141 | | 5.710 | 200.3822 | 0.0000 | 0.0000 | 0.0000 | 5.00 | 418.8293 | | 5.810 | 199.6181 | 0.0000 | 0.0000 | 0.0000 | 5.20 | 413.5699 | | 5.910 | 198.8907 | 0.0000 | 0.0000 | 0.0000 | 5.40 | 408.7229 | | 6.010 | 198.1967 | 0.0000 | 0.0000 | 0.0000 | 5.60 | 404.1972 | | 6.110 | 197.5330 | 0.0000 | 0.0000 | 0.0000 | 5.80 | 399.9222 | | 6.210 | 196.8966 | 0.0000 | 0.0000 | 0.0000 | 6.00 | 395.8433 | | 6.310 | 196.2846 | 0.0000 | 0.0000 | 0.0000 | 6.20 | 391.9163 | | 6.410 | 195.6944 | 0.0000 | 0.0000 | 0.0000 | 6.40 | 388.1049 | | 6.510 | 195.1235 | 0.0000 | 0.0000 | 0.0000 | 6.50 | 384.6619 | | 6.610 | 194.5693 | 0.0000 | 0.0000 | 0.0000 | 6.80 | 380.7091 | | 6.710 | 194.0297 | 0.0000 | 0.0000 | 0.0000 | 7.00 | 377.0752 | | 6.810 | 193.5026 | 0.0000 | 0.0000 | 0.0000 | 7.20 | 373.4585 | | 6.910 | 192.9859 | 0.0000 | 0.0000 | 0.0000 | 7.50 |
368.0372 | | | 192.4781 | 0.0000 | 0.0000 | | | 362.6859 | | 7.010 | | | | 0.0000 | 7.80 | | | 7.110 | 191.9776 | 0.0000 | 0.0000 | 0.0000 | 8.00 | 359.0452 | | 7.210 | 191.4829 | 0.0000 | 0.0000 | 0.0000 | 8.20 | 355.4540 | | 7.310 | 190.9930 | 0.0000 | 0.0000 | 0.0000 | 8.50 | 350.1859 | | 7.410 | 190.5069 | 0.0000 | 0.0000 | 0.0000 | 8.80 | 345.1753 | | 7.510 | 190.0239 | 0.0000 | 0.0000 | 0.0000 | 9.00 | 342.0567 | | 7.610 | 189.5436 | 0.0000 | 0.0000 | 0.0000 | 9.20 | 340.0155 | | 7.710 | 189.0656 | 0.0000 | 0.0000 | 0.0000 | 9.50 | 335.5925 | TABLE 8. Data on the electron scattering cross sections for CF_3 for selected energy points. Energies (E) are given in eV; cross sections are given in 10^{-21} m². The electronic archive presents the same data for 400 energy points. Key: IEXS=integral alstic scattering cross section; EXC1=excitation to the first excited A 2A_2 state; EXS2=excitation to the second excited B 2E state; EXS3=excitation to the third excited 2 2E state; MTXS=momentum transfer cross section—Continued | Е | IEXS | EXCM | EXSB | EXSO | Е | MTXS | |-------|----------|--------|--------|--------|-------|----------| | 7.810 | 188.5898 | 0.0000 | 0.0000 | 0.0000 | 9.80 | 329.2728 | | 7.910 | 188.1152 | 0.0019 | 0.0000 | 0.0000 | 10.00 | 339.1812 | | 8.010 | 187.6450 | 0.0085 | 0.0000 | 0.0000 | | | | 8.110 | 187.1782 | 0.0151 | 0.0000 | 0.0000 | | | | 8.210 | 186.7160 | 0.0217 | 0.0000 | 0.0000 | | | | 8.310 | 186.2595 | 0.0285 | 0.0000 | 0.0000 | | | | 8.410 | 185.8099 | 0.0354 | 0.0000 | 0.0000 | | | | 8.510 | 185.3683 | 0.0424 | 0.0000 | 0.0000 | | | | 8.610 | 184.9359 | 0.0495 | 0.0000 | 0.0000 | | | | 8.710 | 184.5094 | 0.0569 | 0.0097 | 0.0000 | | | | 8.810 | 184.0901 | 0.0650 | 0.0284 | 0.0000 | | | | 8.910 | 183.6853 | 0.0745 | 0.0521 | 0.0000 | | | | 9.010 | 183.2954 | 0.0873 | 0.0765 | 0.0000 | | | | 9.110 | 182.9129 | 0.1095 | 0.1046 | 0.0000 | | | | 9.210 | 182.5194 | 0.1651 | 0.1446 | 0.0000 | | | | 9.310 | 182.1125 | 0.3208 | 0.2098 | 0.0000 | | | | 9.410 | 181.8618 | 0.3615 | 0.2721 | 0.0000 | | | | 9.510 | 181.6790 | 0.2714 | 0.3684 | 0.0000 | | | | 9.610 | 181.3324 | 0.3158 | 0.6487 | 0.0000 | | | | 9.710 | 181.5429 | 0.4110 | 0.6336 | 0.0000 | | | | 9.810 | 181.5669 | 0.4008 | 0.3443 | 0.0337 | | | | 9.910 | 181.5375 | 0.3823 | 0.3243 | 0.0519 | | | part due to the fact that our previous low-energy electron collision calculations for the OCIO radical of Baluja *et al.*⁵⁰ gave generally excellent agreement with experimental measurements in the 0.1–10 eV energy range. Our calculations show that CF and CF_2 support rich lowenergy resonant structures. It is well known that some lowenergy resonances provide routes to dissociative electron attachment. The fate of these resonances is estimated using the reflection approximation. The resonance widths are not taken into account in the present work, therefore, these estimates are not precise. Dissociative attachment cross sections for CF_x are estimated as 50% of the cross sections for the exci- Fig. 16. Momentum transfer cross section for electron scattering by the CF₃ radical. tation of individual resonances. This estimate is crude and has an error of about 50%. The (CF+e⁻) system has three low-energy shape resonances in the integral elastic cross section, which are $^3\Sigma^-$, $^1\Delta$, and $^1\Sigma^+$. These resonances become bound at C-F bond lengths larger than 2.5 a_0 ($^3\Sigma^-$), 3.3 a_0 ($^1\Delta$), and 3.6 a_0 ($^1\Sigma^+$). The reflection approximation suggests that about 20% of the $^1\Sigma^+$ resonance may asymptotically dissociate to C(1D)+F⁻(1S) and the remaining 80% forms a negative ion (CF⁻)*, while the $^3\Sigma^-$ and $^1\Delta$ resonances form vibrationally excited negative ions (CF⁻)*. It is likely that states of (CF⁻)* resonances which do not lead to DEA will autoionize leading to vibrational excitation of the target. We estimate the DEA cross section of CF which peaks at 1.76 \times 10⁻²⁰ m² for the incident electron energy of 2.19 eV. The 2B_1 resonance in the integral elastic cross section of CF₂ is assigned. This resonance becomes bound at C-F bond lengths greater than 3.2 a_0 . From the reflection approximation about 5% of the 2B_1 resonance asymptotically may dissociate to CF(${}^2\Pi$)+F⁻(1 S) and 95% of the resonance forms a vibrationally excited negative ion (CF₂⁻)*. The DEA cross section for CF₂ is estimated to peak at 25.76×10⁻²⁰ m² for the electron energy of 0.91 eV. Like the integral elastic and excitation cross sections, momentum transfer cross sections for CF and CF₂ presented here have several low energy resonant structures. Some of these structures correspond to resonances also present in the integral elastic cross sections. In contrast to calculations on CF and CF₂, our calculations on CF₃ show the absence of any low-lying resonances. The integral elastic cross section and the momentum transfer cross section for CF3 therefore do not have any resonant structures. The absence of any low-lying resonances in the (CF₃+e⁻) system means that CF₃ will not undergo DEA under standard etching plasma conditions. This may have significant implications for plasma processing. First, the low anion density in a plasma formed from a CF3 precursor feed gas may lead to a significant reduction of the sheath above the sample. This will change the cation energies and transport properties to the surface. 51,52 Second, anions act as nuclei for polymerization reactions,⁵³ which form the so-called "dust." This dust has to be periodically removed from the reactor thus leading to a costly down time in the processing plant. Furthermore, it has been estimated that between 60% and 90% of the current perfluorocarbon emissions of industrial plasma reactors take place during the cleaning of the chambers.⁵⁴ Consequently, the feed gas based on CF₃I rather then C₂F₄ could significantly affect the formation of polymers in the reactor and the ion etching rate. ### 8. Acknowledgments We thank Professor Jean-Paul Booth for many helpful discussions and encouraging us to write this paper. We also acknowledge the data provided on the integral and momentum transfer cross sections by Professor Marco Lima, electron ionization cross sections by Professor Tilmann Märk, and Dr. Garscadden. Professor Vincent McKoy and Professor Carl Winstead are also acknowledged for the data provided in this paper on the integral elastic and momentum transfer cross sections. Professor Joshipura and Dr. B. Antony are also acknowledged for the data provided. P.L.V. acknowledges the honorary researcher fellow position at University College London during the preparation of this manuscript, S.E. and N.J.M. acknowledge the support of U.K. funding councils EPSRC, NERC, and CLRC. I.R. would like to thank the British Government and EPSRC, J.T. acknowledges EPSRC for financial support. Most of the calculations on CF_x radicals were performed on Sunfire computer Ra at the UCL HiPerSpace computer center. #### 9. References - ¹B. Graham, Physics World **14**, 31 (2001). - ²M. A. Lieberman and A. J. Lichtenberg, *Principles of Plasma Discharges and Material Processing* (Wiley, New York, 1994). - ³ Agenda, Conf. Parties 3, Kyoto, Item 5 (1997). - ⁴T. Goto, Adv. At. Mol. Phys. 44, 99 (2001). - ⁵T. Makabe, Adv. At. Mol. Phys. **44**, 127 (2001). - ⁶S. Raoux, M. B. T. Tanaka, H. Ponnekanti, M. Seamons, T. Deacon, L. Xia, F. Pham, D. Silvetti, D. Cheung, and K. Fairbairn, J. Vac. Sci. Technol. B 71(2), 477 (1999). - ⁷IPCC, International Panel on Climate Change, The Third Assessment Report (www.ipcc.ch) (2001). - ⁸S. Solomon, J. B. Burkholder, A. R. Ravishankara, and R. R. Garcia, J. Geophys. Res. 99, 20929 (1994). - ⁹G. Acerboni, J. A. Buekes, N. R. Jensen, J. Hjorth, G. Myhre, C. J. Nielsen, and J. K. Sundet, Atm. Environ. 35, 4113 (2001). - ¹⁰ S. Samukawa and T. Mukai, J. Vac. Sci. Technol. A 17, 2551 (1999). - ¹¹ T. Oster, O. Ingólfsson, M. Meinke, T. Jaffke, and E. Illenberger, J. Chem. Phys. **99**, 5141 (1993). - ¹² T. K. Minton, P. Felder, R. C. Scales, and J. R. Huber, Chem. Phys. Lett. 164, 113 (1989). - ¹³ S. Samukawa, T. Mukai, and K. Noguchi, Mater. Sci. Semicond. Process. 2, 203 (1999). - ¹⁴L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 29(4), 553 (2000). - ¹⁵L. G. Christophorou and J. K. Olthoff, Appl. Surf. Sci. 192, 309 (2002). - ¹⁶I. Rozum, N. J. Mason, and J. Tennyson, J. Phys. B: At. Mol. Opt. Phys. 35, 1583 (2002). - ¹⁷I. Rozum, N. J. Mason, and J. Tennyson, J. Phys. B: At. Mol. Opt. Phys. 36, 2419 (2003a). - ¹⁸I. Rozum, N. J. Mason, and J. Tennyson, New J. Phys. 5, 155.1 (2003b). - ¹⁹ I. Rozum and J. Tennyson, J. Phys. B: At. Mol. Opt. Phys. 37, 957 (2004). - ²⁰L. G. Christophorou, Plenary Talks, The Technological Plasmas Workshop, Birmingham, UK, 2003. - ²¹ V. Tarnovsky and K. Becker, J. Chem. Phys. **98**, 7868 (1993). - ²² V. Tarnovsky, P. Kurunczi, D. Rogozhnikov, and K. Becker, Int. J. Mass Spectrom. Ion Processes 128, 181 (1993). - ²³ M. H. Bettega, A. Natalense, M. Lima, and L. G. Ferreira, J. Phys. B: At. Mol. Opt. Phys. **34**, 4041 (2003). - ²⁴ N. J. Mason, P. Limão-Vieira, S. Eden, P. Kendall, S. Pathak, A. Dawes, J. Tennyson, P. Tegeder, M. Kitajima, M. Okamoto, *et al.*, Intern. J. Mass Spectrom. **223**, 647 (2003). - ²⁵ C. Szmytkowski, S. Kwitnewski, and E. Ptasiska-Denga, Phys. Rev. A 68, 032715 (2003). - ²⁶C. Winstead and V. McKoy, J. Chem. Phys. **116**, 1380 (2002). - ²⁷S. Eden, P. Limão-Vieira, P. A. Kendall, N. J. Mason, J. Delwiche, M. Hubin-Franskin, T. Tanaka, M. Kitajima, H. Tanaka, H. Cho, *et al.*, Chem. Phys. **297**, 257 (2004). - ²⁸ M. Kitajima, M. Okamoto, K. Sunohara, H. Tanaka, H. Cho, S. Sam-ukawa, S. Eden, and N. J. Mason, J. Phys. B: At. Mol. Opt. Phys. 35, 3257 (2002). - ²⁹ K. Sunohara, M. Kitajima, H. Tanaka, M. Kimura, and H. Cho, J. Phys. B: At. Mol. Opt. Phys. **36**, 1843 (2003). - ³⁰ M. Kitajima, R. Suzuki, H. Tanaka, L. Pichl, and H. Cho,
Nukleonika 48, 89 (2003). - ³¹M. K. Kawada, O. Sueoka, and M. Kimura, Chem. Phys. Lett. **330**, 34 (2000). - ³² K. N. Joshipura, V. Minaxi, C. G. Limbachiya, and B. K. Antony, Phys. Rev. A 69, 022705 (2004). - ³³C. Q. Jiao, G. Ganguly, C. A. DeJoseph, and A. Garscadden, Int. J. Mass Spectrom. 208, 127 (2001). - ³⁴ U. Onthong, H. Deutsch, K. Becker, S. Matt. M. Probst, and T. D. Märk, Int. J. Mass Spectrom. 214, 53 (2002). - ³⁵ K. N. Joshipura, M. Vinodkumar, B. K. Antony, and N. J. Mason, Eur. Phys J. D 23, 81 (2003). - ³⁶T. Nakumura, H. Motomura, and K. Tachibana, Jpn. J. Appl. Phys. **30**, 847 (2001). - ³⁷ Y. Jiang, J. Sun, and L. Wan, Phys. Rev. A **62**, 062712 (2000). - ³⁸ K. Yoshida, S. Goto, H. Tagashira, C. Winstead, B. V. McKoy, and W. L. Morgan, J. Appl. Phys. **91**, 2637 (2002). - ³⁹ E. Illenberger, H. Baumgärtel, and S. Süzer, J. Electron. Spectrosc. Relat. Phenom. 33, 123 (1984). - ⁴⁰ A. N. Goyette, J. de Urquijo, Y. Wang, L. G. Christophorou, and J. K. Olthoff, J. Chem. Phys. **114**, 8932 (2001). - ⁴¹ M. Bobeldijk, W. Zande, and P. J. Kistemaker, Chem. Phys. **179**, 125 (1994). - ⁴² H. Deutsch, K. Becker, S. Matt, and T. D. Märk, Int. J. Mass Spectrom. 197, 37 (2000). - ⁴³ W. M. Huo, V. Tarnovsky, and K. H. Becker, Chem. Phys. Lett. **358**, 328 - (2002). 44 M. T. Lee, L. M. Brescansin, L. E. Machado, and F. Machado, Phys. Rev. - A **66**, 012720 (2002). ⁴⁵L. A. Morgan, J. Tennyson, and C. J. Gillan, Comput. Phys. Commun. **114**, 120 (1998). - ⁴⁶N. Sanna and F. A. Gianturco, Comput. Phys. Commun. **114**, 142 (1998). - ⁴⁷T. L. Porter, D. E. Mann, and N. Acquista, J. Mol. Spectrosc. **16**, 228 (1965). - ⁴⁸B. S. Jursic, Theor. Chem. Acc. **99**, 289 (1998). - ⁴⁹ R. B. Diniz, M. Lima, and F. J. Paixão, J. Phys. B: At. Opt. Mol. Phys. **32**, L539 (1999). - ⁵⁰ K. L. Baluja, N. J. Mason, L. A. Morgan, and J. Tennyson, J. Phys. B: At. Opt. Mol. Phys. **34**, 4041 (2001). - ⁵¹R. N. Franklin and J. Snell, J. Phys. D: Appl. Phys. **33**, 1990 (2000). - ⁵²R. N. Franklin, J. Phys. D: Appl. Phys. **35**, 536 (2002). - ⁵³ E. Stoffels, W. W. Stoffels, and K. Tachibana, J. Vac. Sci. Technol. A 16, 87 (1998). - ⁵⁴L. Beu and P. T. Brown, Semiconductor Fabtech, 11th ed., 91 (2000). - ⁵⁵ P. Chabert, H. Abada, J.-P. Booth, and M. A. Lieberman, J. Appl. Phys. **94**, 76 (2003). - ⁵⁶ P. Chabert, G. Cunge, J.-P. Booth, and J. Perrin, Appl. Phys. Lett. **79**, 916 (2001).